AD-A153 986 A PRIHRL SIHPLEX RPPROBCH T0 PURE PROCESSING NETWORKS 7 171
CU)> TEXAS UNIY RT AUSTIN CENTER FOR CYBERNETIC STUDIES
C H CHEN ET AL. FEB 85 CC5-496 No8014-81-C-8236

UNCLASSIFIED F/G

S At Be B A e I Ah e A B D AR an) m e

T =
.
e iz ““ 22
== - 4. li=
S |“||2.o
T
Lo - | ————
““‘E’ ““‘ 1.8
Ii2s it gl
MICROCOPY RESQLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS 196« 4
o
‘®
[
R I T S VR D I S L S R Aty

?

T A L O L RV e L TS VT RN TR TR T T 0 LTy WA g e g gy r‘
{
|

Research Report CCS 496

A PRIMAL SIMPLEX APPROACH TO PURE
PROCESSING NETWORKS |

by

C.-H. Chen
M. Engquist |

CENTER FOR
CYBERNETIC
STUDIES

The University of Texas
Austin,Texas 78712

DTIC

ELECTE
MAY 2 2 1985

“DISTRIBUTION STATEMLNT A

Approved box public releaset
Distribution Unlimited

£

v\d” o

. [AT LG T U
PSR LA S FINE SPIE E AP W0y S e e Sy S PN

- T e e o e @ W T NN e s
T T W T R W T A 3 Iadh i ond T ANl P S N + " -

irx Research Report CCS 496

A PRIMAL SIMPLEX APPROACH TO PURE
PROCESSING NETWORKS

by

C.-H. Chen
M. Engquist

February 1985

B
i
r-..
{ g
i This paper was partly supported by ONR Contract N00Q14-81-C-0236, ONR
i Contract NOOO14-82-K-0295, USARI Contract MDA, 903-83-K-0312 and a grant
\ from the Un1vers1ty Research Institute at The,Un1vers1ty of Texas.

® Reproduction in whole or in part is permitted for any purpose of the
. United States Government. | o

\ K

CENTER FOR CYBERNETIC STUDIES‘

- A. Charnes, Director

® College of Business Administration 5.202

{ The University of Texas at Austin
Austin, Texas 78712-1177

(512) 471-1821 o .
DISTRidun Wl SOATLIUNT A
Lﬂpproved for public release|

Diatribution Unlimited !

it e e nalie e S aat)
o

. - . . - .t h a " e
- N ~ . - . * * * a - PP Y
I A T A WU R W DAL WVN S g papw y

, @

VTR T

w— —yT—y T TTN I T W g T S e e
LA At = adiCath A A DAL M . MR AL TRl P A e, . 1

. A PRIMAL SIMPLEX APPROACH TO PURE PROCESSING NETWORKS

BY

C.-H. Chen, M. Engquist

Abstract

Pure processing network problems are minimum cost flow problems
in which the flow entering or leaving a node may be constrained to do
so in given proportions. In this paper, new theoretical results
concerning pure processing networks are developed, and based on these
results, two new primal simplex variants are presented. One of these
variants has been implemented and tested against a genera1 purpose
linear programming code. A large class of problems is identified for
which the specialized code 1s an order of magn1tude faster than the
general purpose code. T ., . -

R . PR
hed v

Key Words:
Networks

Processing Networks
Linear Programming

.......

........
..... .
e et . - R At S -, T S R
PPN S - b WP T U AT NPT UR S W AT ST S UL W PN PR SPTEAPS- Y ek ta e S ialiala
PR A — P -

EEDESER v LA s g sed saibiag o danibond sl bt Al S A A T ST
.
1. INTRODUCTION
n Network problems which allow proportional flow restrictions con the arcs

entering or leaving some nodes are called processing network problems.
Processing network structure arises in a number of application areas
including energy modelling [20], assembly models [28], and management of
working capital [7]. A processing network model used in manpower planning
is described in [4,5]. Processing network terminology was introduced by
Koene [19], and a survey of applications is contained in [19].

In this paper we consider pure processing network problems. For such
problems, conservation of flow holds both at nodes and along arcs. A given
linear programming (LP) problem can be transformed to pure processing
network form in three steps which are roughly described as: c¢reate a new
row in the LP tableau which is the negative of the sum of the original rows,
scale the columns of the new tableau 30 that the positive components of each
column sum to one, and split each non-network column into two new columns
containing its positive and negative parts, respectively. These two new
columns are forced to correspond to equal variables by the addition of a new
constraint. Further details of the transformation are found in [19]. Since

the transformation allows any LP problem to be formulated as a pure

processing network, it seems unlikely that efficient solution techniques
o based entirely on the graph traversal methods used to sclve pure network

problems are possible. Rather, the appropriate strategy is to handle the

'. pure network structure using graphical methods while the non-network part of

ﬁ the problem i{s handled separately. Basis partitioning in the primal simplex

? algorithm is the technique we use for this purpose. The proportional flow
@

Aon L e 2 aan A e g

o

restrictions can be formulated as non-network variables (side variables) or
as non-network constraints (side constraints). We find the side variable
formulation preferable since it leads to a working basis of lower dimension.
For one of the simplex variants we discuss, the dimension of the working
basis equals the number of basic side variables which, }or some problems,
can be quite small. Cn the other hand, when the number of basic side
variables increases to some point as yet unknown, our partitioning approach
will break even with general purpose LP solution methods.

Pure network problems have been solved 150-200 times faster than the
general purpose LP code, APEX III, using a specialized primal simplex code
{13]. This has motivated the study of pure network problems with side
constraints or side variables. The papers [11,12] show that problems with a
single side constraint can be solved 25-50 times faster than APEX III. For
problems having multiple side constraints or side variables, computational
results have been quite limited, and those which are available are less
encouraging. Primal partitioning methods for pure network problems with
multiple side constraints have been investigated by Klingman and Russell
(18] and Chen and Saigal [6]. A recent computational study by Ali et al.
(1] showed that on multicommodity network flow problems, a primal
partitioning code ran about three times faster than MINOS ([25] on problems
with up to 3% binding linking constraints.

A primal partitioning algorithm for pure network problems with both
side constraints and side variables was developed by GClover and Klingman
{14). In [14], an implementation of the side constraint case is discussed

along with preliminary computational results. MecBride [22] has extended the

N S T i, Y PPy

L e

2
;.

b

b

L
e
>

s sa R it

MR |

Ak
-

L il e snn e Su 20 4
A ¥, LT

YT
J

v At v e hd Lol sl il e ShalCuRd i sty
T >y - — i e A~ A Jven A Aa e iee Jhen it A /i AN S S SR A S N R

methods of [14] to the solution of generalized network problems with both
side variables and constraints. An implementation of this algorithm was
tested against MINOS with the result that the specialized code was about
five times faster overall. Four of the problems solved in MeBride's study
were generalized processing network problems. Although such problems are
quite similar to those studied in the present paper, they allow gains or
losses of flow along arcs and are somewhat more difficult to solve. On
these generalized processing network problems, the specialized code ran
about two and one-half times faster than MINOS.

Koene [19] proposed special primal algorithms for both pure and
generalized processing networks based on a side variable formulation. These
algorithms have not been implemented. Engquist and Chen [8,9] developed a
primal partitioning approach which used some of the ideas of [19] applied to
a side constraint formulation, and they presented preliminary computational
comparison of a specialized code with MINOS. It should be noted that the
algorithm of [8,9] differs considerably from the primal simplex variants
introduced in the present paper. McBride [21] developed a hybrid primal
partitioning technique for generalized processing networks which starts the
problem scolution using the side constraint formulation and switches to the
side variable formulation one column at a time as the corresponding side
constraints attain feasibility. Two test problems were solved for which the

hybrid approach proved beneficial compared to either the side variable or

side constraint methods.

I . T T U S U T A P SO -

I A

Pl LT T TR TR e e e et e ondl Set el St SN e, S i S S S

2. PROBLEM FORMULATION

Figure 1. Node v is known as a splitting node, and associated with each arc

(v,w) of Figure 1 is a value a, 0 < & < 1. The flow on arc (v,w) is
required to equal S times the flow entering node v. For pure processing
networks, conservation of flow holds at node v, and thus

t
! a
z=]

vw(z)=1 (2.1)

‘must hold. It is convenient to associate avv-1 with splitting node v.

w(1)

w(t)

Figure 1. A Splitting Node

- - a . PR WL N, I Y. PUP.AT WAL I P W
P L

h (o ame uch M sl a-gl age
-

We note that splitting nodes are represented graphically as squares
while other nodes are shown as circles. The arcs of Figure 1 leaving node v
are called processing arcs, while the arc entering node v is termed an
allocation arc. The nodes w(1), w(2), ..., w(t) along with the splitting
node are called processing nodes.

In the LP fermulation of the pure processing network problem (2.3) -
(2.6), the processing arcs are represented by a single column, called a

processing column, in the constraint matrix. This column has the form

a i W Vv
vV nro

-a) in row w(z), z =1, 2, ..., t (2.2)

vw(z

0 elsewhere.

A netwﬁrk arc is represented by a network column thch contains only two
nonzero values, a 1 and a -1. The row containing the 1 corresponds to the
tail node of the arc, while the row containing the -1 corresponds to the
head node. The c¢olumn corresponding to an allocation are is called an .
allocation column.

In [19], the definition of pure processing networks includes the
structure formed when the direction of the arcs in Figure 1 is reversed. - By
complementing flows with respect to thelr capacities and adjusting supply
values appropriately, this structure can be reduced to the one shown in

Figure 1. Thus, there is no loss of generality in restricting attention to

the structure of Figure 1.

. v .. e et et e
N . e B T L AT R PRSI W I W LA G

vy

T vyY

- .Y S 3 D SR B dteas S 2h A e t-uibd - e~ Al Il i SR Sha AAR e dhta b np i A M R T e e R L

The pure processing network problem (problem PPN) is

minimize S\Xy * Cp¥p (2.3)

subject to: ANXN + Apxp = b ' (2.4)
< <

0 s Xy S h‘\J (2.5)

C $x, S§n (2.6)

The mxn matrix AN is the node arc incidence matrix for a pure network N,
while the mxp matrix AP contains the processing columns. Vector b contains
the supply values, while Cy and Cp contain unit costs for the vectors of

decision variables Xy and Xp - The capacities are the components of the

simple upper bound vectors hN and h,. In Figure 1, if arc (u,v) corresponds
to column r of AN and the corresponding processing column (2.2) is column s
of A,, then it is assumed that the capacities [hN]r and [hP]s are equal.

We assume, without loss of generality, that a slack arc and artificial
arcs with Big-M costs have been introduced into the network N so that it is

connected and the matrix AN has rank m. We also assume that each row of

[AN. AP] contains at most one non-zero component from the columns of A

p*
The latter assumption is for notational convenience only and does not

restrict the application of our methods.

PO P W ST

---- I T
. AN P2 e -2 n e ACkn gt Bl Vi i A
- S— Ty A=l -

; T YTV W -

An example PPN problem is shown in Figure 2. This problem is

o uncapacitated, and the arc labels in rectangles are costs. Costs on the

processing arcs are zero. Arc labels in semicircles are used to Indicate

the a, values of (2.2).

Figure 2. A PPN Example

L s a gy @A S ot A SN aE S il

3. BASIS STRUCTURE

Until further notice, we let B denote a basis matrix for PPN. The

-

column corresponding <o the slack arec, which contains 2 single rnonzero
value, must be contained in B. Otherwise, the rows of B8 sum to zero. Let
B' be the matrix obtained from 3 by omitting the slack arc column. Let r be
the number of colurns of 8 from Ap. Tre next theorem and its proof are

-
t

taken from [19].

Thecrem 1. The partial network of N corresponding to columns of 3' frem A
consists of r+! trees if and only if B contains » cclumns from Ap.

Proof. The number of arcs in a tree is one less than the number ¢f nodes.
This fact implies that m-{(r+!) network columns from 3' correspcnd %o r+?

trees and vice versa, and the result fcllcws.

8 = (8, 8,] (3.1)
where 2, acontains the columns of B from A\J and 82 contains r columns of B

from AP. The r+1 trees whose existence is guaranteed by Theorem 1 are

te;med basis trees. The slack arc is incident to one of these basis trees
and the basis tree with the slack arc adjoined is called the basis quasi-
tree. For the remaining r basis trees, root nodes are chosen arbitrarily.
The resulting r rooted trees are called the rooted basis trees. In Figure
3, the basis quasi~£ree and the rooted basis trees of an optimal basis for

the problem of Figure 2 are shown. Optimal flows are shown on the arcs. We

3

4

’."‘.

s

.

s

p

4
@

)

{

b

.

r

a

o

1

note that one of the rooted basis trees is a single node in t

.
AP B

A

P

) -
PPN W

Dolimte St S Bath Mot Sat B NI e St Jage St S S BetCiadc St R Chal I ACE A A

126.67

Figure 3. Optimal Basis Trees

e e
Wt .

i e e B i ittt o

his example.

S m ey

L i ot oy i ane ans e st Beat @ Sah- T dbbiini e eSS T A S o o
e I St T et B St e AR B JLES A ab AT SR : - o -

. e — ~ Y vy v oy Ty
R T A o Lt A f‘(“'T I .1 - v
1 .
e ° ® '
K . : K
*

-
. t

Ty
',

10

We assume that the rows of [AV' AD] are arranged so that the last r

rows correspond to the roots of the rooted basis trees. The first m-r rows

of B1 form a matrix T while the remaining r rows form matrix D. Likewise,

the first m-r rows of 82 form a matrix C while the last r rows form matrix

F. The resulting partition is

B = (3.2)

We note that T corresponds graphically to a collection of quasi-trees.
In order to state the next theorem, we temporarily drop the assumption
that B is a basis for PPN. Instead, we assume that B contains m columns of

[AN, Ap] including the slack arc column and that B is partiticned as in

(3.1) and (3.2) so that T corresponds to a collection of quasi-trees.

We define the matrix Q by

Q=F -DT 'C. (3.3)

Theorem 2. B is a basis matrix for PPN if and only if Q is nonsingular.

Proof. It follows that

(3.4)

o e nm Bt W AT e s B

e S e Rl e

A Al L S B S - I

11
where I denotes identity matrices of appropriately chosen dimension. From

(3.4) we obtain
det B = det T det Q. (3.95)

Since T corresponds to a collection of quasi-trees, det T # 0. The result
follows directly.
Theorems 1 and 2 suggest the following approach to obtaining a basis

matrix B for PPN: m-r columns of AN which form r trees and one quasi-tree
are chosen along with r columns of Ap such that the resulting matrix Q is

nonsingular.

For a basis B, the matrix Q of (3.3) is called the working basis.
Before proceeding with an investigation of working basis structure, we make
a preliminary definition. Suppose that the rooted basis trees are numbered
from 1 to r. The ith tree indicator function is defined to be 1 on the
nodes of rooted basis tree i and O on the nodes of all other basis trees.
We further suppose that the numbering of the rooted basis trees is done so

that tree i corresponds via its root node to the ith row D1 of matrix D.

Lemma 1. The ith tree indicator function restricted to non-root ncdes
S |
equals -DiT .

Proof. The matrix T represents a number.of quasi-trees. Suppose that one
of these quasi-trees, say 1, is selected. In the first case, the slack arc

of t and the corresponding component of Di is =1. Forward substitution

yields the desired result. 1In the second case, the slack arc is oppositely

Lo . R
Aatoataa .. a_ s a

T eT Y e e T W e e W T w T T T R Y s sy s e

directed, the corresponding component of Di is 1, and forward substitution

igain vields the result. If the nodes of t 2re contained in rooted basis

tree §, §J # 1, or in the basis quasi-tree, Di assigns a zero value to the

slack arc of t and the result follows.
‘e now consider basis matrix B partitioned as in (3.1), and we suppose

that column j of 82 is the processing c¢olumn with splitting node v. Pij is

defined tc be the set of processing nodes in rooted basis tree i which

correspond to nonzero values in colurm j of 52.

Theorem 3. For a basis B, the elements qij of the working basis Q satisfy

q " Z a (3.6)
wer , .
iJ

where the sum in (3.6) {3 defined to be zero in case Pi is empty.

J

Proof. If the root node of rooted basis tree i1 is a processing node
corresponding to column j, then an « value is contributed to the sum in
(3.6) by the first term on the right hand side of (3.3). That the
contribution of oéher processing nodes in rooted basis tree i is given by
(3.6) follows directly from (3.3) and Lemma 1.

Remark. It follows from (3.6) that the matrix Q is independent of the
choice of root nodes for the rooted basis trees.

When column a of [AN, AP] enters basis B in the primal simplex

algorithm, {t i{s necessary to compute the updated column y where y is the

solution to

By = a. (3.7)

PP
.-

12

; T s e " W) o - c, A v P RN
» N, S DU SN0 Srv 00 G IV e R T AR LN G G LN S W W GPw et e e 2 a A PN
PR, DS P TS, BT D P S WY ST I WY WU e, T R S e T S R W

" .

—r vy

v~ T Y Ey v

Lanadt et Ak Sealh Sunih il Miall i inl el ion Sk A SN S A s
Pl - . - e T A

We next indicate how the structure of B can be used in calculating y.

The vector y is partitioned as
y = [y, v, | (3.8)

SO as to be compatible with (3.1). Then (3.7) can be rewritten as

B,y, * Byy, = a. (3.9)

We suppose that a is partitiocned as [2‘] where a. contains the first m-r
2

1

rows of a in (3.9) and a, contains the remaining r rows. Using (3.2), it

follows from (3.9) that

¥, = T-1a

-1
1 T Cy, (3.10)
and

Fy, = a, - Dy,. (3.11)

Upon combining (3.10) and (3.11), we have

Qy, = a, - DT-1a1. (3.12)

If we interpret the vector a as a supply vector, it is possible to give

a flow interpretation to (3.12). Using Theorem 3 and Lemma 1, the ith row
of (3.12) may be interpreted as equating the flow into the ith rooted basis

tree due to Yo with the supply to that rooted basis tree. Similarly, the

first term on the right hand side of (3.10) can be interpreted as a flow due

13

- - e - — ————————— T T W T T W W R Y Y s e v T TR R

14
to supply vector a,, while the second term is a flow generated by induced
n suppliss at processing nodes which result from y2 values.
We partition the vector w of dual variables relative to B as n=[W1,W2]
1 where m corresponds to the first m-r rows of B and T, corresponds to the
Fi: last r rows of B. The vector Cg of basic costs is partitioned as [01, 02]
g, in order %o be compatible with (3.1). The dual variables satisfy the
' equation
B = ¢y, (3.13)
When the partition of B from (3.2) is used in (3.13), the following
equations result.
%, = e T - 501! (3.14)
1 7% "2 :
wZF =c, - mC. (3.15)
g By combining (3.14) and (3.15) we obtain
[
, -1 .
L: m,Q=¢c, - ¢ T C (3.16)
T’
From Lemma 1, it follows that the second term on the right hand side of
f (3.14) can be interpreted as assigning the ith component of , to all nodes,
?0
i except the root, in rooted basis tree i. For nodes in the basis quasi-tree,
i
f a value of zero is assigned. For any node in rooted basis tree i, other
|
.

.‘ .- L P .-A - - 2 - R ;‘,1‘..!_.'. "".‘ 5 o A . Iy A

LAt et ahatl

r—————
S e e

— —TT Cabeean Shathc Bt g el Rl N - r = < A

15

than the root node, the first term on the right hand side of (3.14)
represents the cost of sending a unit flow from that node to the root node,
while the second term is the cost of adding a unit of supply to this root.
The jth compconents in (3.16) can be interpreted as equating two ways of
computing the cost of increasing supply at the root nodes of rooted basis
trees due to a unit increase in the variable of the jth basic processing
column. On the left hand side of (3.16) this cost is computed by adding the
costs incurred at root nodes which are caused by increases in supply to the
corresponding trees. On the right hand side of the equation the cost of the
jth basic processing column is adcded to costs incurred by sending
proportional flows from the processing ncdes of the jth basic processing
column to the roots of rooted basis trees.

Theorem 4. If the entering column a is from AN and the arc e corresponding
to a has both end nodes in basis tree 1, then

(1) v, = 0.

(ii) The leaving column corresponds to an arc on the cycle formed

in 1 by e.

(iii) The working basis Q is unchanged by this pivot.

Proof: (i) We verify that a, - DT-1a1 is zero in (3.12). If t is the

basis quasi-tree, then a, = 0 and DT.1 is zero on the nodes of t by Lemma 1.

If t is rooted basis tree i, the proof breaks down into two cases both of

which use Lemma 1. First, suppose that one end node of e is the root node.

Then the ith components of a, and -DT.1a1 have absolute value one and differ

2

Zanbie it SRR NS S5 0 A SRR CaS M

CZEmiiin 2un N dene g

s W Y % W e e Ry RS A N - e Oy w - - - _1

16

in sign. Second, suppose that both end nodes of e are non-root nodes. Then

-1 .
2, = 0 and the {th component of -DT a, is the sum of terms +1 and -1.

2 1

(ii) By (i), y, = 0 and (3.10) reduces to y, = T_1a1 which is

essentially the formula for the updated entering column in a pure network.

(iii) This follows directly from Theorem 3 since the sets Pij in

(3.6) are unchanged.

Remark. If AN in (2.4) is changed to represent a generalized network rather

than a pure network, the analogue of Theorem 4 fails. This indicates that
more 13 involved in going from pure to generalized processing networks than

one might suspect at first glance.

4, PRIMAL SIMPLEX VARIANTS

In this section we present two primal simplex variants -- Algorithms 1
and 2 -- for PPN, Algorithm 1 appears to be more general in that no special
assumptions concerning PPN basis structure are made. For Algorithm 2, we
assume that all processing columns remain in the basis during all
iterations. We show, however, that this assumption is not restrictive, and
we indicate how this algorithm allows standard linear programming methods to
be used in updating the working basis.

Before stating these algorithms, we outline the situations which arise
in updating the basis trees and the working basis Q during the basis
exchange step of the primal simplex algorithm. Before the basis exchange is

executed, we assume that T 1s the basis quasi-tree and 1t i=1,2, ..y,

il

.~ o a o

T

VvV YrY Y, Y

——

— g 0 W e W et D
Ml udl i Ak Jad e B O ARAANA* A REIL S A .«

17

are the rooted basis trees. Those basis trees which have been changed
during the exchange step will be designated by means of an asterisk. If a

i

change to 1, i # C, results in a change to one of the sets Pi' in (3.6),

then row i of Q must be updated. The main cases to be considered are as
follows:

(i) The entering column is a processing column and the leaving column
is a network column (arc). If the leaving arc is in basis tree i, then row
i of Q will be updated (unless i = 0) and an additional row and column will
be adjoined to Q.

(ii) The entering column is a network column (arc) while the leaving

column is processing column k of BZ' If the entering arc is incident to T4
and Tj' then these two trees are joined to form r;. Row { of Q will be

updated (unless i = 0) and row j and column k of Q will be deleted.

(iii) Both the entering column and the leaving column are processing
columns. The column of Q corresponding to the entering column is replaced
by one corresponding to the leaving column.

(iv) Both the entering and leaving columns are network columns (arcs).

As in case (ii), Ty and Tj are joined via the entering arec to form Ti. If

the leaving arc 1s contained in T then T splits into two trees upon its

removal. One of these trees becomes t* and the other becomes r;. Ir i, j,

and k are nonzero and distinct, then three rows of Q will be updated.

Otherwise, special ~ases occur in which at most two rows of Q are updated.

RN
[- . .

'LL‘_L'L-;. PO W S VAU G, WO SR . P

—

AN

v

AR Jueo Aesnal

One of the special cases mentioned in (iv) occurs when both the enter-
ing and leaving arcs are in the same basis tree as covered by Theorem 4.
For this case, no updating of rows of Q3 1s necessary.

We proceed now with the first primal simplex variant.

Algorithm 1

0. Obtain an initial basis. Set up the initial basis tree and working
basis. Compute initial dual variables and basic solution.

1. Price nonbasic columns until an entering column is found. If no
entering column exists, stop--the current basic solution is optimal.

2. Compute y, and y, using (3.10) and (3.12).

3. Perform the ratio test. Update basic solution values.
4. Update basis trees and working basis (basis exchange step--see preceding
discussion).

5. Update m and 7, using (3.14) and (3.16). Go to Step 1.

Although algorithms which allow for working basis updates as general as
those required in Step 4 of Algorithm 1 have been implemented [14, 22], such
procedures remain relatively untested compared to standard LP basis updating
procedures. For this reason, we have specialized Algorithm ! so that the
only case which occurs in Step 4 is the one in which both the entering and
leaving columns are network columns (case iv). This means that at most

three rows of Q will be updated during each basis exchange step. We will

PRSI N

i ATt e e W v e e T e w7 7. s
— . —am.~ e w—Tw ——c T TE T TY Ty iy A - . - . B R

1Y
R

19

show in Theorem 5 that these rows can be replaced one at a time using the

rr oo s vt r,
. [.

e |

T
usual L? column replacement technique applied to Q , the transpose of Q.

The fundamental idea underlying Algorithm 2 is that any basis matrix
for PPN must contain at least one member of any given pair consisting of an
allocation column and its corresponding processing column (see Figure 1).
Thus, it is possible to assume that the initial basis for PPN contains all

the columns of Ap. Also, the flow on an allocaticn arc and the value of the

corresponding processing variable are always the same. This allows us to
modify the ratio test so that whenever a processing column would be the
leaving column, we choose the correspending allocation column to leave
instead. Note that the allocation column must be basic in this situation,
since otherwise the pivot would lead to the impossible situation in which
c both the allocation column and the processing column are nonbasic. In
Algorithm 2 then, the only columns to enter or leave the basis are network
columns, and these are the only columns which need to bg priced or
considered in the ratio test.

In order to describe the basis exchange step of Algorithm 2, it will be
{ useful to visualize the basis trees as hanging downward from their roots.
; The node inclident to the slack arc in the basis quasi-tree is taken as the

root there. Thus, {f two basis trees T and 1, are joined by an entering

J

arc, the resulting tree r; will retain the root of Ty while 1, will hang

v

be low T in r;. Also, when a leaving arc 1s deleted from a basis tree T

Y e

- o St R T @ arA BPe avh DO ani a~AadiGauhant il Sl SO AR R STt o

-~ v % WY

20

an upper tree <t which contains the root of 1, and a lower tree T2 are

k1 k
formed.
We introduce the vector A to represent certain quantities which may be

thought of as pseudo node potentials.

A =c, T (4.1)

It will be useful to extend A by defining Aj = 0 for root nodes j of rooted

basis trees. By an abuse of notation, this extension will also be denoted

as A.

Algorithm 2

0. Obtain an initial basis which includes all processing columns. Set up
the initial basis trees and working basis. Compute initial dual variables
and basic solution.

1. Price nonbasic arcs until an entering arc e is found. If no entering

arc exists, stop--the current basic solution is optimal.

2. If both end nodes of e are not in a common basis tree 1, go to Step 3.
Otherwise, restrict the ratio test and flow update to the arcs on the cycle
formed in 1t by e. Update X on the tree hanging below e after the leaving
arc 1s removed. Go to Step 6.

3. Compute y, and y, v3ing (3.10) and (3.12).

4, Perform the ratio test. Update basic solution values.

—TwT T Y

K
'-
’
y, .
L
o

B Jiuay SRty Juan Sae 2y 2 Rl -
. s B s e - -
T Riah et Sat A At it i - -

5. Update basis trees and working basis. (The details follow for this step

when e is incident to Yy and Tj’ the leaving arc is in T and i, j, k are

nonzero and distinect. The remaining cases involve updating at most two rows

of Q and the details are omitted.) First, Tj hangs below Ty via arc e to

form 1; and A is updated on rj. Row i of Q is updated to form Q¥*. Next,

the leaving arc is removed from Ty to form an upper tree Tt and a lower

K1
tree Teor The lower tree becomes rg and A is updated on t¥. Row J of Q¥* is
updated to form Q**. Finally, T becomes r; and row k of Q** is updated to
form Q¥*¥, |

6. Update 5 using (3.16). Compute ™, using

w1 = A - w.DT (4.2)

W“here A has been previously updated. Go to Step 1.

Implementation of Algorithm 2 is discussed in Section 5. There, a
method for determining the initial basis and a pricing strategy are
presented along with other techniques.

In step 2 of Algorithm 2, pivots in which both end nodes of the
entering arc are in a common basis tree are treated separately. This step
{s justified by Theorem Y4, and its implementation is discussed in the next
section. Pivots of this type will be referred to as pure network pivots,

while all other pivots will be called processing network pivots.

AN S &

el s

TET T A W -

Updating of X on a tree which is rehung is done just like the updating

of node potentials in the pure network case. This means that a certain

constant must be added to A values on this tree.

The use of LP updating procedures in the basis exchange step of
Algorithm 2 is justified by the following theorem. Again, only the case in
which i, j, and k are nonzero and distinct is covered, although the
remaining cases can be treated similarly.

Theorem 5. In Step 5 of Algorithm 2, matrices Q* and Q** are nonsingular.
Proof. It follows from Theorem 3 and the way that Q* is defined that row i
of Q* is the sum of rows 1 and j of Q. Q is nonsingular by Theorem 2 and
this implies the nonsingularity of Q*. Since Q*** {s the working basis

after the pivot, it is also nonsingular by Theorem 2. It follows from

Theorem 3 and the way that Q** and Q*** are defined that row k of Q¥*¥*¥* is

the difference of row k and row j of Q*¥*, Thus, Q** is also nonsingular.

We note that the values of w, in (4.2) can be computed as they are

1

needed in Step 1 of Algorithm 2. If the tall node u of arc e is in = the

ll

head node v-of arc e is in t,, and the cost of e is denoted as Ce’ then the

J
reduced cost of e is

o - -
s cg A, * A [“211 + ["2]J (4.3)
-
3
! Since it is possible for { or j in (4.3) to be O, we define [wz]o to be 0.
{

@
'

[_

s ats e Sleh olE S e sbat S aS Al

e

o o o oot ml ol o Y

ey N VT TPy I T Y TITwL 7L PmA"A "Wy Wy B = 7

23
5. IMPLEMENTATION
An implementation of Algorithm 2, which we call PROCNET, was coded in
FORTRAN. Problem data storage in PRCCNET is accomplished by means of arrays
for arc costs, capacities, and head nodes. Also, arrays containing the
nonzero values in processing columns and the positions of these values are

used. The costs of processing columns, components of Cp in (2.3), are

assumed to be zero, since such costs can be placed on the allocation arcs
instead.

PRCCNET incorporates the basis trees into a single, larger tree which,
following [14], we call the master basis tree. The root of this tree is
called the master root, and all basis trees have their roots connected to
the master root by artificial arcs known as external arcs. These external
arcs are introduced solely for ease in handling the basis trees. The slack
arc of the basis quasi-tree is disregarded since it plays no role in the
implementation. The master basis tree is maintained by means of the

predecessor, depth, thread, and reverse thread functions [2, 3, 15, 16, 171].

In PRCCNET, the transposed working basis QT is maintained in LU
factored form by means of the Harwell LAOS routines [26, 27]. The procedure
used in PROCNET to obtain an initial basis for PPN is based on heuristics
described in [4, 10]. The arc data for each processing arc is generated in
order to apply the procedure. The resulting pure network with proportional
flow restrictions relaxed {s scolved first. Next, the flow values of the
relaxed solution on the allocation arcs are used to create a new pure

network problem with nonzero lower bounds on the processing arcs. If the

P WA DAL VL WL A S PULIS

R P T L WAL WA ST I, W W S VL. VL. VP ur- S .

P v e Ty Y TwW T e T e R R e T T
\ aans ra—— d v b [t e A Pl Bl Rl . e Pt A -

RN e e
b
e
o
SN
. 9 '

- 24
;'.

- flow value on the allocation arc (u, v) of Figure 1 is x, then the lower

sound on arce (v, w{z)) is set to O.?avw(z)x. The value 0.7 was chosen

during preliminary testing and was not changed throughout the tests
descrided in Section 6. The pure network problem with lower bounds is then
solved, and we say that the optimal flows for this problem on the allocation
arcs are approximate allocation values. These approximate allocation values
become the flows on the allocation arcs in the initial PPN basis as
described next. For any allocation are whose approximate allocation value

is between the bounds given in PPN, PROCNET creates a parallel allocation
arc. If the approximate allocation value fer such an arc is X and the

capacity of the arc is H, then this arc is assigned a new capacity h - x

while its para.lel arc is given a capacity x. Both of these arcs have costs
equal to the cost of the allocation arc in PPN. The allocation arc is
nonbasic at 0 while its parallel arc is nonbasic at capacity in the initial
PPN basis. Similarly, an allocation arc whose approximate allocation value
is at a PPN bound is set nonbasic at this bound. The approximate allocation
values induce proportional flows in the processing arcs and these in turn

induce supplies at the processing nodes. The pure network problem which has

these induced supplies as well as the original supplies of PPN and which has
& the processing arcs removed is then solved. The solution of the latter pure

network problem is accomplished by means of the network simplex algorithm

L iiachay ans ey

t- with an all-artificial initial basis, where the artifici;l arcs have Big-M
E | costs. Since the feasibility of the pure network problem is not guaranteed,
é its optimal basis tree is likely to contain artificial arcs with positive
L.

3

L

- A
p e e Y
o '
[
L N
DN
.
Y

A Y e .

o * . . i “ e Tl S e - . ! -‘-1
R R P L DY T U Syt SO Yol A, 0 WIS R Woui S0t W WA ST NRAY SRt SRRPRE S Jh

v

E‘J

T

vav"1
.-

A

— T W

—r
T

L a o e ok s bl At s gl At il At NedboBdh Soll e Jiadh Ml Rul

I P T O R R T Ty Ty gy T v A Tl N Te e

L ik _cpudh souiin N
s 2am s s paliue S S Rall Al g I R

25
flow. This optimal basis tree becomes the basis quasi-tree for the initial
PPN basis. All processing columns are included in the initial basis and the
rooted basis trees consist of the p splitting nodes. It follows that the
initial Q is the p x p identity matrix and Theorem ? guarantees that we have
created a PPN basis.

Next, we discuss other special techniques used in implementing the
steps of Algorithm 2. Following Sections 3 and 4, rooted basis trees are
numbered 1 through p. The basis quasi-tree is numbered 0. Further, any
node in a given basis tree is assigned the number of that tree, and the
resulting node function is called treenum. During pricing, treenum is used
to provide the i and j values in (4.3). Two candidate lists, L1 and L2, are
maintained in PROCNET--L1 for.pure network pivots and L2 for processing
network pivots. Treenum is used to determine the candidate list on which a
given pivpt eligible arc is placed. PROCNET repeats Step 2 of Algorithm 2

for all eligible arcs from L1 before updating m, in Step 6. The length of L1

2
was set at 100 and the length of L2 was set at 30. After all pivots from LI
have been made, the best pivots from L2 (up to 20 pivots) are made. This
logic for L2 follows [23]. The parameter values used for L1 and Lé remained
fixed during the computational tests described in Section 6.

The ratio test for pure network pivots is implemented by using the
depth and predecessor functions to identify the cycle determined by the
entering arc. The only arcs for which ratios are computed are on this

cycle. For processing network pivots, y, in (3.12) is computed using the
2 .

LAOS routines. The y, values in (3.10) are then computed with the aid of

A

M

MEE SN au e g gn
R

P

B
N ARS RAG U aams 4 Lmas oo s Sk - A At Shan il Sl S iadh Mo ML Y A T

26
the reverse thread function. Since processing columns are always basic,

only the y1 values are used in the ratio test.

In step 5, when arc e is incident to t, and t,, this arc is adjoined to

i J

the master basis tree and the external arc between the master root and t, is

J

removed. If the leaving arc is f and the subtree below f is t, then f is
removed from the master basis tree and an external arc from the master root

to 1 is adjoined. The node functions on Tj and t are updated as in pure

networks [2, 3, 15, 16, 17]. The o values (2.2) of each basis tree are

linked to facilitate updating rows of Q.

6. COMPUTATION

All test problems in this study were sol?ed by PROCNET and MINOS.
These are both in-core FORTRAN codes, and testing was done using the FIN 4
compiler with optimization level 2 on the CDC 170/750 at The University of
Texas. The execution times reported are in central processor seconds and
are exclusive of input and output.

Although MINGCS is designed for linearly constrained problems with
nonlinear objectives, none of the nonlinear subroutines were used here.
When restricted to linear problems, MINOS uses the revised simplex algorithm
with Phase I-II and maintains the basis in LU factored form. The PARTIAL
PRICE parameter for MINOS was set to 20 and the basis was reinverted every
60 iterations. Other MINOS parameters were set to default values [24].

Parameter settings used for PROCNET in addition to these provided in

Section 5 are given next. The Big-M value used in the starting procedure

T T A S T U S AP

was 99999. A reduced cost tolerance of 10-5 was used, and pivots with

minimum ratio less than 10_10 were treated as degenerate. The matrix QT was
reinverted each time 60 column updates had been performed. In the LAOS
routines, pivot elements less than 0.1 times the largest element in the
pivot row were excluded. LAOS default values were used for other
parameters.

6.1 Test problems and discussion of results.

The class of allocation/processing (AP) network problems previously
described in [8, 9] was used for computational tests. These problems have 2
dual block angular form where the subproblems corresponding to diagonal
blocks are transportation problems and the coupling columns are processing
columns. The AP problems considered here have transportation subproblems
which may be sparse, whereas those of [8, 9] were dense.

The problem data for AP problems is randomly generated. As these
problems are generated, a feasible flow is created. The capacity of each
arc héving finite capacity is set to a parameter u times the feasible flow
generated for that arc. Although other problem data was randomly generated
as previously stated, the total supply was fixed at 10000 for all test
problems. Two cost ranges were used for the test problems and they are
described as follows. Cost range A has costs on the allocation arcs in the
range 100 to 150 and other arc costs in the rahge 1 to 100. Cost range B
has costs on the allocation arcs in the range 1 to 100 with other arc costs

in the range -100 to -1.

. . PR
PP S % Bl -

27

[-
e s - WV RS VP ¥ VPR WY

Ll il A L D e AR S
- ® - Ly BAAY e e Te
RN b St mal A " S A P Y .

28
The main test problem data is given in Table 1. Each row of this table
represents three problem groups, and every problem in these three groups nas
the same network topology. Each problem group contains‘two problems--one
with cost range A and one with cost range B. For the problems described in

Table 1, only the allocation arcs may have a finite capacity.

Table 1. AP PROBLEM DATA

o — —— ———— — — ——— — — e - A A = T\ oy e T - — " . — > - - - — - —— T - - - -

Problem Rows Columns Processing Nenzeros per
Groups (m) (n + p) Columns (p) Proc. Column
1 -3 781 2410 10 7
y - 6 21 3510 10 8
7- 9 876 2550 50 6
10 - 12 1201 3650 50 7
13 - 15 1001 3300 100 5
16 - 18 1276 4300 - 100 4
19 - 21 1051 3750 150 4
22 - 24 1351 4650 150 .4
25 - 27 1276 LuqQo 200 4
28 - 30 1501 5000 200 4

Computational results for Problem Groups 1 - 30 are presented in Table
2. The times and iteration counts reported are average values for the two
problems in each group. The results are presented in this way since no
clear pattern emerged regarding the two cost ranges. PROCNET start time is
the time required to create the initial PPN basis. PROCNET iterations begin
with the initial PPN basis and include both pure and processing network
pivots. The number of basic allocation arcs at optimality is determined by
PROCNET. For an implementation of Algorithm 1 this would be the dimension
of the working basis at optimality. Over the 30 problem groups, the ratio

of total MINOS time to total PROCNET time is 10.05.

PP GURE WP W

.
| 29

Table 2. Computational Results for AP Problems

- - . " " — " . — . — Y —— - ——— - ———— = - - — . - - - = - WS -

- PROCNET PROCNET Basic Alloc. MINOS
| Problem u Start Total PROCNET Arcs at Total MINOS
Group Time Time Iterations Opt. Time Iterations

1 1.1 1.9 4.9 154 10 9N 1600
2. 2.0 1.7 13.9 767 10 99 1736

3 ® 2.7 14,2 693 10 103 1846

y 1.1 3.1 7.8 211 10 188 2381

5 2.0 2.9 24.2 919 10 203 2540

6 @ 2.2 23.7 942 10 207 2623

7 1.1 2.8 15.6 540 14 251 3920

3 2.0 2.4 45.1 1737 Ly 353 5075

9 o 1.9 2.2 1633 49 360 4969
10 1.1 4.6 33.0 1006 16 537 6112
1M 2.0 3.6 68.3 2178 42 756 7900
12 L 2.9 85.7 2829 49 731 7455
13 1.1 4.6 31.6 943 26 449 6114
14 2.0 3.8 51.4 1646 69 580 7116
15 ® 2.9 T71.4 2365 90 553 6702
16 1.1 7.6 25.5 541 29 562 6687
17 2.0 5.9 49.2 1467 76 634 7520
18 = 5.1 70.1 2322 93 599 6940
19 1.1 3.5 14.8 377 87 240 3216
20 2.0 3.4 34.4 1200 9 256 3584
21 @ 2.8 41.3 1483 124 224 3271
22 1.1 3.9 19.7 Lgs 96 356 3828
23 2.0 4.0 48.8 1414 130 361 3964
24 ® 3.5 62.1 2002 140 349 3856
25 1.1 8.6 49,8 981 u8 794 9049
26 2.0 6.2 100.3 2338 129 911 9899
27 @ 4.7 132.0 3563 165 831 8769
28 1.1 8.6 60.6 1174 48 1114 9818
29 2.0 6.3 98.9 2209 139 1236 10958
30 ® 5.0 145.3 3900 191 1009 8965

Totals 1485.8 14937

Degeneracy has been a cause for concern in the solution of pure network

problems. For example, it was reported in [3] that on some test problems,
o more than 90% of the pivots were degenerate. For the AP processing network
problems in Table 1, degenerate pivots were far less prevalent. For these

problems, 7.2% of the pivots were degenerate when solved by PROCNET. The

Pty
. f A

A S

- - B . . - - e R
DR U S U U W SOUT VAL YA U G Sn Wy . [l W W S WD VoSl e .

v

L AER Ui e S me SN

— — b Ehmne Smeay sy sEeany Shatasrdhesns Memn et Sk’ Shaks Shens Pt tanatt Mt Shah Shadh “Shafiniigin TR
T - - Cal Daalie . B . - - - - - -

30

percentage of degenerate pivots does increase with problem size, however,

W

nd it is possible that degeneracy may play more of a role as larger
processing network problems are solved.

An alternative strategy for handling candidate list L! was coded into a
modified version of PROCNET. This alternative strategy takes only the best
pivots (up to 50) from L1 before taking pivots from L2. With this modified
version of PROCNET, the problems in Problem Groups 28, 29, and 30 were
solved again. The sum of the solution times for these three problem groups
was decreased by about 3%.

6.2 Effects of changes in capacity.

Total solution times for problem groups from Table 1! with given u
vaiues are reported in Table 3. As Table 3 shows, the total time ratio
exhibits a wide variation with u. Apparently, the initial PPN basis
generated by PROCNET gives a better start for smaller values of u. These
results indicate that PROCNET will be highly efficient on problems where
capacity for processing activities, such as assembly or refining, is quite
limited, while capacity for network activities, such as shipment of raw

materials or finished products, is essentially unlimited.

Table 3. Solution Times vs. u Values

- —— i —————————— o . — - S - - - - " — -

Problem i PROCNET MINOS MINOS/PROCNET
Groups Total Time Total Time Total Time Ratio
1, 4,...,28 1.1 263.3 4582 17.40
2, 5,...,29 2.0 534.5 5389 10.08
3, 6,...,30 @ 688.0 4966 7.22

- - - —— T o —— i s D U Y W e A A - - - - -

PRI GO ¥ S

pap——

P

[

[N - amne e A St SR B R i - -

.31

The results of Table 3 led us to investigate problems in which all arcs
have finite capacities. Only two new problem groups were considered because
of budgetary restrictions on computer time. They are Problem Groups 3! and
32 and they have the same problem data as Problem Groups 8 and 11,
respectively, except that all arcs have finite capacities generated with u =
2.0. As the data from Table 4 shows, the transition to the new problem
groups causes the MINOS/PROCNET total time ratio to increase sharply over
corresponding values for Problem Groups 8 and 1]. We note that for Problem
Group 32 this ratio is 17.55. The increases in this ratio are explained by
an accompanying sharp increase in the time required by MINOCS to achieve

feasibility.

Table 4. Further Computational Results for AP Problems

- . — o —— " —— A — - - — - T P e = U v W = - S - - — - - — -

Problem W PROCNET PROCNET PROCNET Basic MINOS MINOS
Group Start "Total Iter- Alloc.Arcs Total Iter-
Time Time ations at Opt. Time ations

31 2.0 2.9 83.5 3403 50 771 10470

32 2.0 4.4 93.6 3640 50 1643 16256

— v — o — - — — A = L — T M D = > W D D m S G T T — D —— VO T . T S . W o - T = — > -~

6.3 Effects of changes in number of processing columns.

In Table 5, the average pivot time is introduced as a measure of the
efficiency of a given code in carrying out a simplex iteration. Obviously,
the total solution time depends on this measure and on the number of pivots
required to reach optimality. Because the majority of work involqed in a
pivot for PROCNET is expended on working basis operations, it was

anticipated that a downward trend in the average pivot time ratio might

v L Bah M S S o e e i A St van B v (A Sadhe i St gt Bl A A0 S g AR e B BN AC A SR L AR A
3 < R 8 0 T TR Pt i i Nl R AN

32
occur as p increases, and this is confirmed in Table 5. On the other hand,
the effectiveness of the initial basis of PRCCNET and its pricing strategy
have resulted in fewer pivots than required by MINOS. Surprisingly, the
total time ratic remains above 10 for all values of p except p = 150.

The percentage of pure network pivots and the average pivot time for
PROCNET in Table 5 generally show an inverse relationship as might be

expected.

Table 5. Performance Values vs Number of Processing Columns.

- ——— —— P — S - A T —— D — —————— — — . ———— —— ——— — —— — — -

Problem Process PROCNET % PROCNET MINOS MINOS/PROCNET
Groups Columns Pure Net- Avg.Pivot Avg.Pivot Avg.Pivot Ttl.Time
(p) work Pvts. Time Time Time Ratio Ratio

1-6 10 36 0.0201 0.0700 3.48 10.05
T7-12 50 22 0.0274 0.0843 3.08 10.31
31-32 50 28 0.02M11 0.0903 3.75 13:63
13-18 100 21 0.0290 0.0822 2.84 11.29
19-24 150 25 0.0288 0.0822 2.86 8.08
25-30 200 17 ' 0.0387 0.1026 2.65 10.04

- — —— — " —— 8 . - T - - — — - " S S > G G . . Y — S —— e — — - — > - - -

6.4 Future implementation and testing.

Computational comparison of PROCNET and MINOS in the present study has
been limited by the core storage requirements of MINOS, which are
considerably greater than those of PROCNET. It is, however, highly
desirable to conduct tests using larger problems to determine more clearly
the class of problems for which PROCNET is effective. We plan to test a new
version of PROCNET against the general purpose LP code MPSX/370. The new
version of PROCNET will itself be coded in PL/I and included in an extended

control language program of the MPSX/370 system. High level MPSX modules

. N . IR PR .- o’ .. . o
. . D e . o LA PSP S S) . P G S Sl dondnesdulineiedincin ooy
L‘_x;‘__;. o« e . .~ o PR VO A A T e . LIS

g L2 i e i i

. It S Jhgth At 20 gy g Jael Ak i Rt e S A S Bl

PR T TYT T RWRWR TR TN Ty TR TERTTE TR W R T QY LT e T e e T e

33

will replace the LAOS routines for handling the working basis. We also plan
to implement Algorithm 1 using a modification of the LACS routines to
maintain the working basis. This implementation should execute faster than
the present PROCNET because it will have a working basis whose average

dimension is smaller.

7. CONCLUSION,

Basis structure and related simplex calculations were studied for
partitioned pure processing network bases. An explicit representation of
the working basis was presented. This representation allows a working basis
row to be generated by graph tracing techniques applied to a corresponding
basis tree. Two new primal simplex variants were defined, and for certain
pivot types it was shown how tree operations in the basis exchange step
result in the replacement of at most three working basis rows. For one of
the primal simplex variants, the working basis update is accomplished by
means of standard LP column replacement techniques applied to the transposed
working basis. This variant was implemented and tested against MINOS on 64
randomly generated problems containing up to 200 processing columns. The
specialized code is more than ten times faster than MINOS, and it is

particularly effective on tightly capacitated problems.

ACKNOWLEDGCMENTS.
We would like to thank Michael Chang for his help with the
{mplementation described in Section 5 and Lawrence Seiford for his editorial

assistance.

w T PR . L. .
e m, [T T LG U U W S L WP I S S

g —————y

v
s

10.

1.

LAl i it vl A ATl > i ~Te e

34

REFERENCES

A. Ali, D. Barnett, X. Farhangian, J. Kennington, 3. McCarl, B. Patty
and ?P. Wong, "Multicommodity Network Problems: Applications and
Computations," IIE Transactions, Vol. 16, pp. 127-134, 1984.

R. Barr, F. Glover and D. Klingman, "Enhancements of Spanning Tree
Labeling Procedures for Network Optimization," INFOR, Vol. 17, pp. 16-
34, 1979.

G. Bradley, G. Brown and G. Graves, "Design and Implementation of Large
Scale Primal Transshipment Algorithms," Management Science, Vol. 24,
pp. 1-34, 1977.

A. Charnes, W.W. Cooper, D. Divine, W. Hinkel, J. Koning and V.
Lovegren, "A Sea-shore Rotation Goal Programming Model for Navy Use,"
Research Report CCS 429, Center for Cybernetic Studies, The University
of Texas, Austin, 1982.

A. Charnes, W.W. Cooper, B. Golany, V. Lovegren, W. Mayfield and M.
Welfe, "The GPSSR System to Support Management of Policy and Execution
of The U.S. Navy's Sea-shore Rotation Program," Research Report CCS
495, Center for Cybernetic Studies, The University of Texas, Austin,
1984, .

S. Chen and R. Saigal, "A Primal Algorithm for Solving a Capacitated
Network Flow Problem with Additional Linear Constraints,'" Networks,
Vol. 7, pp. 59-79, 1977.

R. Crum, D. Klingman and L. Tavis, "An Operational Approach to
Integrated Working Capital Planning," Journal of Economics and

Business, Vol. 35, pp. 343-378, 1983.

M. Engquist and C.-H. Chen, "Efficient Tree Handling Procedures for
Allocation/Processing Networks," Research Report CCS 437, Center for
Cybernetic Studies, The University of Texas, Austin, 1982.

M. Engquist and C.-H. Chen, "Computational Ccmparison of Two Solution
Procedures for Allocation/Processing Networks," to appear in a
forthcoming Mathematical Programming Study.

F. Glover, R. Glover and F. Martinson, "A Netform System for Resource
Planning in the U.S. Bureau of Land Management," to appear in Journal
of The QOperational Research Society.

F. Glover, J. Hultz and D. Klingman, "Improved Computer-based Planning
Techniques," Interfaces, Vol. 8, pp. 16-25, 1978.

P Y

I A 20 A

12.

13.

14,

15.

19.

20.

21.

22.

23.

24,

25.

- L e e s s g e e i A Al -l A M B Y R

35
F. Glover, D. Karney, D. Klingman and R. Russell, "Solving Singly
Constrained Transshipment Problems," Transportation Science, Vol. 12,
pp. 277-297, 1978.

F. Glover and D. Klingman, "Capsule View of Future Developments on
Large-scale Network and Network-related Problems," Research Report CCS
238, Center for Cybernetic Studies, The University of Texas, Austin,
1975. -

F Glover and D. Klingman, "The Simplex SON Algorithm for LP/Embedded
Network Problems," Mathematical Programming Study, Vol. 15, pp. 148-
176, 1981.

F. Glover, D. Klingman and J. Stutz, "Augmented Threaded Index Method
for Network Optimization," INFOR, Vol. 12, pp. 293-298, 1974.

P. Jensen and J. Barnes, Network Flow Programming, John Wiley and Sons,
New York, 1980.

J. Kennington and R. Helgason, Algorithms for Network Programming, John
Wiley and Sons, New York, 1980.

D. Xlingman and R. Russell, "On Solving Constrained Transportation
Problems," Operations Research, Vol. 23, pp. 91-107, 1975.

J. Koene, "Minimal Cost Flow in Processing Networks, a Primal
Appreach,” Ph.D. Thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, 1982.

A. Manne, R. Richels and J. Weynant, "Energy Policy Modelling: A
Survey," Operations Research, Vol. 27, pp. 1-36, 1979.

R. McBride, "Solving Generalized Processing Network Problems," Working
Paper, School of Business, University of Southern California, Los
Angeles, 1982.

R. McBride, "Solving Embedded Generalized Network Problems," to appear
in European Journal of Operations Research.

J. Mulvey, "Pivot Strategies for Primal-Simplex Network Codes," Journal
of The Association for Computing Machinery, Vol. 25, pp. 266-270, 1978.

B. Murtagh and M. Saunders, "MINOS User's Guide," Technical Report SOL
77-9, Systems Optimization Laboratory, Department of Operations
Research, Stanford University, Stanford, 1977.

B. Murtagh and M. Saunders, "Large Scale Linearly Constrained
Optimization,™ Mathematical Programming, Vol. 14, pp. 41-72, 1978.

e b e LI M I ."‘"‘“‘"""T

P

,r.. W..
Yo ® _

T

26.

28.

- - - - a4 - yowTTe T e eV - - 7 T T M T T e
Pl Pl B alias, i e e . NS diiEafi-h A i M) - W

36

J. Reid, "FORTRAN Subroutines for Handling Sparse Linear Programming
Bases," Report AERE-R8269, Computer Science and Systems Division, AERE
Harwell, Oxfordshire, England, 1376.

J. Reld, "A Sparsity=-expleoiting Variant of the 3Bartels-Golub
Decomposition for Linear Programming Bases," Mathematical Programming,
Vol. 24, pp. 55-69, 1982.

E. Steinberg and H. Napier, "Optimal Multi-level Lot Sizing for
Requirements Planning Systems," Management Science, Vol. 26, pp. 1258-
1271, 1980.

-~ ~\ - - . - - . . -
- "‘ *, . K N - . - . . T - 3 -
P n L SO, L R, WS G Sy I WY Tht Dy i € Gl SUUE G0 GO IR WD G S-S SED S Y L AP i

Y T T

e e

EN D

FILMED

6-85

